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Abstract. We study self-similarity in random binary rooted trees. In a well-understood
case of Galton-Watson trees, a distribution on a space of trees is said to be self-similar if it
is invariant with respect to the operation of pruning, which cuts the tree leaves. This only
happens for the critical Galton-Watson tree (a constant process progeny), which also exhibits
other special symmetries. We extend the prune-invariance setup to arbitrary binary trees
with edge lengths. In this general case the class of self-similar processes becomes much richer
and covers a variety of practically important situations. The main result is construction of
the hierarchical branching processes that satisfy various self-similarity definitions (including
mean self-similarity and self-similarity in edge-lengths) depending on the process parameters.
Taking the limit of averaged stochastic dynamics, as the number of trajectories increases, we
obtain a deterministic system of differential equations that describes the process evolution.
This system is used to establish a phase transition that separates fading and explosive
behavior of the average process progeny. We describe a class of critical Tokunaga processes
that happen at the phase transition boundary. They enjoy multiple additional symmetries
and include the celebrated critical binary Galton-Watson tree with independent exponential
edge length as a special case. Finally, we discuss a duality between trees and continuous
functions, and introduce a class of extreme-invariant processes, constructed as the Harris
paths of a self-similar hierarchical branching process, whose local minima has the same
(linearly scaled) distribution as the original process.
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1. Introduction

Nature commonly exhibits dendritic structures, both static and dynamic, that can be
represented by tree graphs [1, 27, 19]. Examples from diverse applications, together with a
review of related coalescence and branching models can be found in Aldous [1], Berestycki
[2], Bertoin [3], Evans [8], Le Gall [16], and Pitman [21]. Despite their apparent diversity,
a number of rigorously studied dendritic structures possess structural self-similarity, which
often allows a low-dimensional parameterization [20, 19, 26, 11]. An illuminating example
is the combinatorial structure of river networks, which is closely approximated by a two-
parametric Tokunaga self-similar model with parameters that are independent of river’s
geographic location [25, 20, 6, 29]. Tree self-similarity has been studied primarily in terms
of the average values of selected branch statistics, and rigorous results have been obtained
only for a very special classes of Markov trees (e.g., binary Galton-Watson trees with no
edge lengths, as in [4]). At the same time, solid empirical evidence motivates a search for a
flexible class of self-similar models that would encompass a variety of observed combinatorial
and metric structures and rules of tree growth. We introduce here a general concept of self-
similarity that accounts for both combinatorial and metric tree structure (Sec. 3.5, Def. 12)
and describe a model (Sect. 5), called hierarchical branching process, that generates a broad
range of self-similar trees (Thm. 4) and includes the critical binary Galton-Watson tree
with exponential edge lengths as a special case (Thm. 8). We study time-invariant tree
distributions, which is a convenient generalization of Markov growth (Thm. 7). We also
introduce a class of critical self-similar Tokunaga processes (Sect. 5.7) that enjoy additional
symmetries — their edge lengths are i.i.d. random variables (Prop. 9), and subtrees of
large Tokunaga trees reproduce the probabilistic structure of the entire random tree space
(Props. 11). The duality between planar trees and continuous functions [9, 21, 28] allows us
using the hierarchical branching process to construct a novel class of time series that satisfy
the extreme-invariance property: the distribution of their local minima is the same as that
of the original series (Sect. 4).

The paper is organized as follows. Section 2 introduces the main definitions, including
the Horton-Strahler order of a tree, tree pruning, and a related concept of prune-invariance.
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Self-similarity for trees with edge lengths is defined in Sect. 3. The duality between trees
and continuous functions is reviewed in Sect. 4. In particular, we define here extreme-
invariant processes that are equivalent to self-similar trees. The main results are presented
in Sect. 5. Sect. 5.1 introduces a hierarchical branching process that generates a rich col-
lection of self-similar trees. The hydrodynamic limit for dynamics of the average numbers
of Horton-Strahler branches is established in Sect. 5.2. The properties of criticality and
time-invariance are defined in Sect. 5.3 and explored in a self-similar processes in Sect. 5.4.
Critical Galton-Watson process and critical Tokunaga processes, which generate the most
intriguing examples of self-similar trees, are discussed in Sects. 5.6, 5.7. Section 6 discusses
the combinatorial structure of the critical Tokunaga process. Section 7 concludes with two
open problems.

2. Random Trees

The focus of this paper is on finite unlabeled rooted reduced planted binary trees with no
planar embedding. The space of such trees, which includes the empty tree φ comprised of a
single root vertex and no edges, is denoted by T .
The existence of the root vertex imposes the parent-offspring relationship between each

pair of the connected vertices in a tree T P T : the one closest to the root is called parent, and
the other – offspring. The absence of planar embedding in this context means the absence
of order between the two offspring of the same parent. A tree is called reduced if it has no
vertices of degree 2; such trees are also called full binary trees. A tree is called planted if
its root has degree 1. Accordingly, there are three types of vertices in a tree from T ztφu:
internal vertices of degree 3, leaves (degree 1) and the root (degree 1). The operation of
series reduction removes each degree-two vertex of a binary tree by merging its adjacent
edges into one. Series reduction turns a rooted binary tree into a reduced rooted binary tree.
The edges of a tree from T may be assigned positive lengths. The space of trees from T

with edge lengths is denoted by L.
Any tree from T or L can be embedded (and represented graphically) in a plane by

selecting an order for each pair of offspring of the same parent. The space of embedded
trees from T (and respectively L) is denoted Tplane (and respectively Lplane). Examples of
trees from Lplane are found in the bottom row of Fig. 1. Choosing different embeddings for
the same tree T P T (or T P L) leads, in general, to different trees from Tplane (or Lplane).
Sometimes we focus on the combinatorial tree shapepT q P T , which retains the branching
structure of T while omitting its edge lengths and embedding.

2.1. Tree pruning and related concepts. The concept of self-similarity is related to the
pruning operation [20, 4, 11]. Pruning (aka Horton pruning) of a tree is an onto function
R : T Ñ T , whose value RpT q for a tree T ‰ φ is obtained by removing the leaves and their
parental edges from T , followed by series reduction. We also set Rpφq “ φ.

The pruning is also well defined for trees with edge lengths (L), where series reduction adds
the lengths of merging edges, and for planar trees (Tplane,Lplane), where the embedding of
the remaining part of a tree is unaffected by pruning. Pruning is illustrated in Fig. 1.

Pruning induces a contracting map on T . The trajectory of each tree T under Rp¨q is
uniquely determined and finite:

(1) T ” R0pT q Ñ R1pT q Ñ ¨ ¨ ¨ Ñ RkpT q “ φ,
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with the empty tree φ as the (only) fixed point. The pre-image R´1pT q of any non-empty
tree T consists of an infinite collection of trees. It is natural to think of the distance to φ

under the pruning map and introduce the respective notion of tree order [10, 24] (see Fig. 1).

Definition 1 (Horton-Strahler order of a tree). The Horton-Strahler order kpT q P Z`

of a tree T P T is defined as the minimal number of prunings necessary to eliminate the tree:

kpT q “ min
kě0

 
RkpT q “ φ

(
.

The definition of order is based on the combinatorial shape of a tree. Accordingly, the order
of a tree T from either of spaces Tplane,L, or Lplane is that of shapepT q. The definition
implies, in particular, that the order of the empty tree is kpφq “ 0, because R0pφq “ φ. Most
of our discussion will be focused on trees with orders k ą 0, and we often assume that the
empty tree φ has zero probability.
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Figure 1. Example of pruning and Horton-Strahler ordering for a tree T P
Lplane. The figure shows the two stages of pruning operation – cutting the
leaves (top row), and consecutive series reduction (bottom row). The initial
tree T is shown in the leftmost position of the bottom row. The gray color in
the top row depicts vertices and edges being pruned. The order of the tree is
kpT q “ 3, since it is eliminated in three prunings, R3pT q “ φ.

Pruning partitions the tree space T into exhaustive and mutually exclusive set of subspaces
HK of trees of order K ě 0 such that RpHK`1q “ HK . Here H0 “ tφu, H1 consists of a
single tree comprised of a root and a leaf connected by an edge, and all other subspaces HK ,
K ě 2, consist of an infinite number of trees.
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2.2. Labeling tree vertices. Sometimes we will need to label the vertices and edges of a
tree (e.g., for selecting a branch or vertex uniformly). The vertices of a planar tree can be
labeled by numbers 1, . . . ,#T (#T denoting the total number of vertices in T ) in order of
depth-first search. We also assume that label of the parental edge for each vertex is taken
from that vertex.

For a tree with no embedding, labeling is done by selecting a suitable embedding and then
using the depth-first search labeling as above. Such embedding should be properly aligned
with the pruning operation, as we describe in the following definition.

Definition 3 (Proper embedding). An embedding function embed : T Ñ Tplane (L Ñ
Lplane) is called proper if for any T P T pT P Lq

R pembedpT qq “ embed pRpT qq ,

where the pruning on the left-hand side is in Tplane (Lplane) and pruning on the right-hand
side is in T (Lq.

A proper embedding for a tree with no edge lengths can be done using the following
induction construction. A tree of order k “ 1 assumes a unique embedding. A tree of order
k “ 2 is embedded by branching all its side-branches of order 1 to the right. Assuming there
exists a proper embedding for trees of order k ď K, we construct the labeling for a tree of
order K ` 1. All its side-branches (of any order) branch to the right. To embed the (only)
two merging complete subtrees, τ1 ‰ τ2, of order K, we consider their farthest non-identical
pruning descendants: trees di “ Rkpτiq, i “ 1, 2 obtained by the maximal possible number k
of pruning iterations such that d1 ‰ d2. The number 0 ď k ď K ´ 2 is well defined since all
trees of order 1, which is the unltimate pruning limit, coincide. By construction, the trees
di differ only by the number of side-branches of order 1 attached to the tree d0 “ Rk`1pτiq,
which already has proper embedding. Consider the numbers of order-1 side-branches within

each edge of d0, in the order of its labeling: pn
piq
1 , . . . , n

piq
#d0

q. The tree whose sequence has
the smallest first non-coinciding number, will branch to the right.
A proper embedding for a tree T P L with edge length is constructed in the same fashion,

with the only correction. From the two merging complete subtrees of order K with the same
combinatorial structure, the one with the shortest root edge branches to the right. This
definition covers the situation of atomless length distribution, which is of primary interest
to us.

3. Tree Self-Similarity

This section defines self-similarity for combinatorial and metric trees. The term self-
similarity is associated with invariance of a tree distribution with respect to the pruning
operation R introduced in Sect. 2.1. The prune-invariance alone, however, is often insuf-
ficient to generate interesting families of trees. This necessitates an additional property –
coordination of conditional measures on subspaces of trees of a given order. Coordination
together with prune-invariance constitutes the self-similarity studied in this work.

We start in Sect. 3.1 with a weak form of self-similarity that only considers the average
values of selected branch statistics; it was introduced in [11]. Section 3.3 discusses a stronger
version of self-similarity that operates with tree distributions. Self-similarity of metric trees
is presented in Sect. 3.5.
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3.1. Mean self-similarity of a combinatorial tree. LetHK Ă T be the subspace of trees
of Horton-Strahler order K ě 0. Naturally, HK

Ş
HK1 “ H if K ‰ K 1, and

Ť
Kě1

HK “ T .

Consider a set of conditional probability measures tµKuKě0 each of which is defined on HK

by µKpT q “ µpT |T P HKq and let pK “ µpHKq. Then µ is represented as a mixture of the
conditional measures:

(2) µ “
8ÿ

K“1

pKµK .

We write EKp¨q for the mathematical expectation with respect to µK . Let Nk “ NkrT s
denotes the number of branches of order k in a tree T P T (see Fig. 2a). We define the
average Horton numbers for subspace HK as

NkrKs “ EKpNkq, 1 ď k ď K, K ě 1.

Let Ni,j “ Ni,jrT s denote the number of instances when an order-i branch merges with an
order-j branch, 1 ď i ă j, in a tree T (see Fig. 2a). Such branches are referred to as
side-branches of order ti, ju. Consider the respective expectation Ni,jrKs :“ EKpNi,jq. The
Tokunaga coefficients Ti,jrKs for subspace HK are defined as

(3) Ti,jrKs “
Ni,jrKs

NjrKs
, 1 ď i ă j ď K.

The Tokunaga coefficient Ti,jrKs is hence reflects the average number of side-branches of
order ti, ju per branch of order j in a tree of order K.

Next, we introduce a property that ensures independence of the side-branch structure of
a tree order.

Definition 4 (Mean coordination). A set of measures tµKuKě1 on tHKuKě1 is called
mean coordinated if Ti,j :“ Ti,jrKs for all K ě 2 and 1 ď i ă j ď K. A measure µ on T is
called mean coordinated if the respective conditional measures tµKu, as in Eq. (2), are mean
coordinated.

For a mean coordinated measure µ, the Tokunaga matrix TK is a K ˆ K matrix

TK “

»
—————–

0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0
. . . . . .

...
...

...
. . . 0 TK´1,K

0 0 . . . 0 0

fi
ffiffiffiffiffifl
,

which coincides with the restriction of any larger-order Tokunaga matrix TM , M ą K, to
the first K ˆ K entries.

Definition 5 (Toeplitz property). A set of measures tµKuKě1 on tHKuKě1 is said to
satisfy the Toeplitz property if Ti,jrKs “ Tj´irKs for each K ě 2 and some sequence TkrKs ě
0, k “ 1, 2, . . . . The elements of the sequences TkrKs are also referred to as Tokunaga
coefficients, which does not create confusion with Ti,jrKs. A measure µ on T is said to satisfy
the Toeplitz property if the respective conditional measures tµKu, as in Eq. (2), satisfy the
Toeplitz property.
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Definition 6 (Mean self-similarity). A measure µ on T is called mean self-similar if it
is mean coordinated and satisfies the Toeplitz property.

For a mean self-similar measure the Tokunaga matrix TK becomes Toeplitz:

TK “

»
—————–

0 T1 T2 . . . TK´1

0 0 T1 . . . TK´2

0 0
. . . . . .

...
...

...
. . . 0 T1

0 0 . . . 0 0

fi
ffiffiffiffiffifl
.

Pruning R decreases the Horton-Strahler order of each vertex (and hence of each branch)
by unity; in particular

(4) NkrT s “ Nk´1 rRpT qs , k ě 2,

(5) Ni,jrT s “ Ni´1,j´1 rRpT qs , 2 ď i ă j.

Consider measure µR

K induced on HK by the pruning operator:

µR

KpAq “ µK`1

`
R´1pAq

˘
@A Ă HK .

The Tokunaga coefficients computed on HK using the induced measure µR

K are denoted by
TR

i,jrKs. Formally,

(6) TR

i,jrKs “ Ti`1,j`1rK ` 1s “
Ni`1,j`1rK ` 1s

Nj`1rK ` 1s
.

Definition 7 (Mean prune-invariance). A set of measures tµKuKě1 on tHKuKě1 is called
mean prune-invariant if Ti,jrKs “ TR

i,jrKs (equivalently, Ti,jrKs “ Ti`1,j`1rK ` 1s), for any
K ě 2 and all 1 ď i ă j ď K. A measure µ on T is called mean prune-invariant if the
respective conditional measures tµKu, as in Eq. (2), are mean prune-invariant.

Definition 8 (Mean self-similarity). A probability measures µ on T is called mean self-
similar with respect to pruning R if it is coordinated and mean prune-invariant.

Proposition 1. Definitions 6 and 8 of mean self-similarity are equivalent.

This equivalence was proven in [11]. Its validity is readily seen from the diagram of Fig. 3a,
which shows relations among the quantities Ti,jrKs, Ti,jrK `1s, and Ti`1,j`1rK `1s involved
in the definitions of coordination, prune-invariance, and Toeplitz property. Moreover, we
observe that if any two of these properties hold, the third also holds. The Venn diagram of
Fig. 3b illustrates the relation among mean coordination, mean prune-invariance, Toeplitz
property and mean self-similarity in the space T . In this work, we refer to the mean self-
similarity with respect to pruning R simply as mean self-similarity.

A variety of mean self-similar measures can be constructed for an arbitrary sequence of
Tokunaga coefficients Tk ě 0, k ě 1. Next, we give a natural example [11].
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Figure 3. Relations among mean coordination, mean prune-invariance, and
Toeplitz property. (a) Pairwise equalities among the quantities Ti,jrKs,
Ti,jrK ` 1s, and Ti`1,j`1rK ` 1s involved in the definitions of mean coordi-
nation, mean prune-invariance, and Toeplitz property. (b) Venn diagram of
the space T illustrating the relation among mean coordination (left trian-
gle), mean prune-invariance (right triangle), and Toeplitz property (bottom
triangle). The mean self-similarity (inner dark triangle) is formed by the in-
tersection of any pair of the three properties.

3.2. Example of a mean self-similar measure: Independent random attachment.

The subspace H1, which consists of a single-leaf tree, possesses a trivial unity mass measure.
To construct a random tree from H2, we select a discrete probability distribution P1,2pnq,
n “ 0, 1, . . . , with the mean value T1. A random tree T P H2 is obtained from the single-leaf
tree τ1 of order 1 via the following two operations. First, we attach two offspring vertices to
the leaf of τ1. This creates a tree of order 2 with no side-branches – one internal vertex of
degree 3, two leaves, and the root. Second, we draw the number Ñ1,2 from the distribution

P1,2, and attach Ñ1,2 vertices to this tree so that they form side-branches of order t1, 2u.
In general, to construct a random tree T P HK of order K ě 2 we select a set of discrete

probability distributions Pk,Kpnq, k “ 1, ..., K´1, on Z` with the respective mean values Tk.
A random tree T P HK is constructed by adding branches of order 1 (leaves) to a random
tree τ P HK´1. First, we add two new child vertices to every leaf of τ hence producing a tree
T̃ of order K with no side-branches of order 1. Second, for each branch b of order 2 ď j ď K

in T̃ we draw a random number Ñ1,jpbq from the distribution Pj´1,K and attach Ñ1,jpbq new
child vertices to this branch so that they form side-branches of order t1, ju. Each new vertex
is attached in a random order with respect to the existing side-branches. Specifically, we
notice that m ě 0 side-branches attached to a branch of order j are uniquely associated
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with m` 1 edges within this branch. The attachment of the new Ñ1,jpbq vertices among the
m`1 edges is given by the equiprobable multinomial distribution with m`1 categories and
Ñ1,jpbq trials.

The procedure described above generates a set of measures tµKuKě1 on tHKuKě1 that are
mean coordinated by construction (recall that the mean values Tk of the distributions Pk,K

are independent of K).
Furthermore, observe that

Ni,j “

Njÿ

bi“1

Ñ1,j´i`1pbiq,

Ni,jrKs “ EKpNi,jq “ EK pEKpNi,j|Njqq “ EKpNj Tj´iq(7)

“ Tj´i EKpNjq “ Tj´i NjrKs,

and hence Ti,jrKs “ Ni,jrKs{NjrKs “ Tj´i, so the tree is mean self-similar, according to
Def. 6.

Remark 2. The properties introduced in this section – mean coordination, mean prune-
invariance, Toeplitz, and mean self-similarity – are completely specified by a set of conditional
measures tµKu, and are independent of the randomization probabilities pK “ µpHKq, see
Eq. (2).

Remark 3. The idea of relating tree mean self-similarity (Def. 8) to mean prune-invariance
(Def. 7) is quite intuitive (see also [4]). Much less so is the requirement of mean coordi-
nation of conditional measures (Def. 4), included in the definition of mean self-similarity.
This requirement is motivated by our goal to bridge the measure-theoretic definition of
self-similarity via the pruning operation (Def. 8) to a statistical definition via the branch
counting (Def. 6). In applications, when a handful of trees of different orders is observed,
the coordination assumption allows one to estimate the Tokunaga coefficients Ti,j and make
inference regarding the Toeplitz property; see [20, 19, 6, 29]. The absence of coordination,
at the same time, opens a possibility of having a variety of prune-invariant measures with no
Toeplitz constraint, which are hardly treatable in applications. To construct a simplest such
measure, let select any tree T2 from the pre-image of the only tree T1 P H1 of order K “ 1
under the pruning operation: T2 P R´1pT1q P H2. In a similar fashion, select any tree TK`1

from the pre-image of TK for K ě 2. This gives us a collection of trees TK P HK , K ě 1 such
that RpTK`1q “ TK . Assign the full measure on HK to TK : µKpTKq “ 1. By construction,
the measures tµKu are mean prune-invariant. They, however, may satisfy neither the mean
coordination nor the Toeplitz property. This construction illustrates how one can produce
rather obscure collections of trees that are mean prune-invariant, providing a motivation for
the coordination requirement adopted in this work.

3.3. Self-similarity of a combinatorial tree. This section introduces a distribution-based
approach to self-similarity.

Definition 9 (Prune-invariance). Consider a probability measure µ on T such that µpφq “
0. Let νpT q “ µ˝R´1pT q “ µ

`
R´1pT q

˘
. (Note that νpφq ą 0.) Measure µ is called invariant

with respect to the pruning operation (prune-invariant) if for any tree T P T we have

(8) ν pT |T ‰ φq “ µpT q.
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Proposition 2. Let µ be a prune-invariant measure on T . Then the distribution of orders,
pK “ µpHKq, is geometric:

(9) pK “ p p1 ´ pqK´1
, K ě 1,

where p “ p1 “ µpH1q, and for any T P HK

(10) µK`1

`
R´1pT q

˘
“ µKpT q.

Proof. Pruning R is a shift operator on the sequence of subspaces tHku:

(11) R´1pHK´1q “ HK , K ě 2.

The only tree eliminated by pruning is the tree of order 1: tτ : Rpτq “ φu “ H1. This allows
to rewrite (8) for any T ‰ φ as

(12) µ
`
R´1pT q

˘
“ µpT q p1 ´ µpH1qq .

Combining (11) and (12) we find for any K ě 2

(13) µ pHKq
by (11)

“ µ
`
R´1pHK´1q

˘ by (12)
“ p1 ´ µpH1qqµpHK´1q,

which establishes (9). Next, for any tree T P HK we have

µpT q “ µpH1q p1 ´ µpH1qqK´1
µKpT q,

µ
`
R´1pT q

˘
“ µpH1q p1 ´ µpH1qqK µK`1

`
R´1pT q

˘
.

Together with (12) this implies (10). �

Proposition 2 shows that a prune-invariant measure µ is completely specified by its con-
ditional measures µK and the mass p “ µpH1q of the tree of order K “ 1. The same result
was obtained for Galton-Watson trees in [4, Thm. 3.5].

Next, we introduce a distributional analog of the mean coordination property; see Def. 4
and Remark 3. Specifically, we assume that a complete subtree TK of a given order K

randomly selected from a random tree TH of order H ě K has a common distribution
independent of H. Since a tree TK of order K has only one complete subtree of order
K, which coincides with TK , this common distribution must be µK . Formally, consider
the following process of selecting a uniform random complete subtree subtreeK,H of order K
from a random tree TH P HH . First, select a random tree TH according to the conditional
measure µH . Label all complete subtrees of order K in TH in order of proper labeling of
Sect. 2.2, and select a uniform random subtree, which we denote subtreeK,H . By construction,
subtreeK,H P HK ; we denote the corresponding sampling measure on HK by µH

K .

Definition 10 (Coordination). A set of measures tµKuKě1 on tHKuKě1 is called coordi-
nated if µH

KpT q “ µKpT q for any K ě 1, H ě K, and T P HK . A measure µ on T is called
coordinated if the respective conditional measures tµKu, as in Eq. (2), are coordinated.

Example 1. The space of finite binary Galton-Watson trees has the coordination property.
Recall that a random binary Galton-Watson tree starts with a single progenitor (root) and
increases its depth in discrete steps: at every step each existing vertex can either split in two
with probability p2 or become a leaf (disappear) with probability p0 “ 1 ´ p2. We denote
the resulting tree distribution on T by GWpp0, p2q. This Markovian generation mechanism
creates complete subtrees of the same structure, independently of the tree order. This implies
coordination.
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Definition 11 (Combinatorial self-similarity). A probability measure µ on T is called
(combinatorially) self-similar with respect to pruning R if it is coordinated and prune-
invariant.

In this work, we refer to combinatorial self-similarity with respect to pruning R simply
as combinatorial self-similarity. It was established in [4] that critical binary Galton-Watson
trees GWp1{2, 1{2q are prune-invariant. Together with coordination (see Example 1), this
implies combinatorial self-similarity. It also has been shown in [4] that non-critical binary
Galton-Watson trees (p0 ‰ 1{2) are not prune-invariant. This gives an example of coordi-
nated measures that are not prune-invariant. Prune-invariant measures with no coordination
can be easily constructed following the approach of Remark 3. To make that construction
consistent with the definition of distributional prune-invariance (Def. 9), each tree TK P HK

must be assigned the probability pK “ pp1 ´ pqK´1.

3.4. Horton law in self-similar trees. We say that a random tree T satisfies a strong
Horton law if the respective sequence NkrKs of branch numbers decays in geometric fashion
as k increases. Formally, we require

(14) lim
KÑ8

NkrKs

N1rKs
“ R1´k, for any k ě 1.

Horton law and its ramifications, which epitomize scale-invariance of dendritic hierarchical
structures, are indispensable in hydrology (e.g., [23, 20, 6]) and have been reported in biology
and other areas; see [19, 13] and references therein. It has been shown in [12] that the tree
that describes a trajectory Kingman’s coalescent process with N particles obeys a weaker
version of Horton law as N Ñ 8, and that the first pruning of this tree for any finite N is
equivalent to a level set tree of a white noise (see Sect. 4 for definitions).

A necessary and sufficient condition for the strong Horton law in a mean self-similar tree
has been established in [11]:

lim sup
kÑ8

T
1{k
k ă 8.

The Horton exponent R in this case is given by R “ 1{w0, where w0 is the only real root of

t̂pzq “ ´1 ` 2z `
8ÿ

k“1

zk Tk

within the interval p0, 1{2s. Informally, this means that any mean self-similar tree with a
“tamed” sequence of Tokunaga coefficients satisfies the strong Horton law.

3.5. Self-similarity of a tree with edge lengths. Consider a tree T P L with edge
lengths given by a positive vector lT “ pl1, . . . , l#T q and let lengthpT q “

ř
i li. We assume

that the edges are labeled in a proper way as described in Sect. 2.2. A tree is completely
specified by its combinatorial shape shapepT q and edge length vector lT . The edge length
vector lT can be specified by distribution χp¨q of a point xT “ px1, . . . , x#T q on the simplexř

i xi “ 1, 0 ă xi ď 1, and conditional distribution F p¨|xT q of the tree length lengthpT q,
where

lT “ xT ˆ lengthpT q.



RANDOM SELF-SIMILAR TREES AND A HIERARCHICAL BRANCHING PROCESS 13

A measure η on L is a joint distribution of tree’s combinatorial shape and its edge lengths;
it has the following component measures.

Combinatorial shape : µpτq “ Law pshapepT q “ τq ,

Relative edge lengths : χτ px̄q “ Law pxT “ x̄ | shapepT q “ τq ,

Total tree length : Fτ,x̄p`q “ Law plengthpT q “ ` |xT “ x̄, shapepT q “ τq .

The definition of self-similarity for a tree with edge lengths builds on its analog for combi-
natorial trees in Sect. 3.3. The combinatorial notions of coordination (Def. 10) and prune-
invariance (Def. 9), which we refer to as coordination and prune-invariance in shapes, are
complemented with analogous properties in edge lengths. Formally, we denote by µH

Kpτq,
χH
τ px̄q, and FH

τ,x̄p`q the component measures for a uniform complete subtree subtreeK,H . (No-
tice that the subtree order K is completely specified by the tree shape τ , which explains the
absence of subscript K in the component measures for subtree length). We also consider the
distribution of edge lengths after pruning:

Ξτ px̄q “ Law
`
xRpT q “ x̄ | shape

`
RpT q

˘
“ τ

˘

and

Φτ,x̄p`q “ Law
`
length

`
RpT q

˘
“ ` |xRpT q “ x̄, shape

`
RpT q

˘
“ τ

˘
.

Finally, we adopt here the notation HK for a subspace of trees of order K ě 1 from L, and
consider conditional measures µKpτq “ µpτ |kpτq “ Kq, K ě 1, for a tree τ P L.

Definition 12 (Self-similarity of a tree with edge lengths). We call a measure η on
L self-similar with respect to pruning R if the following conditions hold

(i) The measure is coordinated in shapes. This means that for every K ě 1 and every
H ě K we have

µH
Kpτq “ µKpτq @τ P HK .

(ii) The measure is coordinated in lengths. This means that for every K ě 1, H ě K,
and τ P HK we have

χH
τ px̄q “ χτ px̄q x̄-a.s. ,

and for every given x̄,

FH
τ,x̄p`q “ Fτ,x̄p`q `-a.s.

(iii) The measure is prune-invariant in shapes. This means that for ν “ µ ˝ R´1 we have

µpτq “ νpτ |τ ‰ φq.

(iv) The measure is prune-invariant in lengths. This means that

Ξτ px̄q “ χτ px̄q

and there exists a scaling exponent ζ ą 0 such that for any combinatorial tree τ P T

we have

Φτ,x̄p`q “ ζ´1Fτ,x̄

ˆ
`

ζ

˙
.

In this work, we refer to self-similarity with respect to pruning R simply as self-similarity.
Section 5 below introduces a rich class of measures that satisfy this definition.
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Time, t

Xt

Xt
(1)

(a) (b)

ba

Figure 6. Pruning of a positive excursion: transition to the local minima of
an excursion Xt corresponds to pruning of the corresponding level set tree. (a)

An original excursion Xt (gray line) and linearly interpolated sequence X
p1q
t of

the respective local minima (black line). (b) The level set tree levelpX
p1q
t q of

the local minima sequence (black lines) is obtained by pruning of the level set
tree levelpXtq of the original excursion (whole tree). The pruned edges are
shown in gray – each of them corresponds to a local maximum of the original
excursion.

Proposition 4 (Pruning for positive excursions, [28]). Using the definitions of this

section, the transition from a positive excursion Xt to the respective excursion X
p1q
t of its

local minima corresponds to pruning of the level-set tree levelpXtq. This is illustrated in a
diagram of Fig. 7. Formally,

level
´
X

pmq
t

¯
“ Rm plevelpXtqq , @m ě 1.

It is straightforward to formulate an analog of Prop. 4 without the excursion assumption
(for continuous functions with a finite number of local minima). This, however, involves
technicalities that are tangential to the essence of this work and will be discussed elsewhere.

Xt Xt

(1)

LEVEL(Xt) LEVEL(Xt   )
(1)

Local minima

Pruning, R
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Local minima
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 t
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e

Local minima

Pruning, R

Figure 7. Transition to the local minima of a function Xt corresponds to
pruning R of the corresponding level set tree levelpXtq.
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4.4. Self-similarity for time series. Consider a time series Xk, k P Z, with an atomless
distribution of values at each k. Let Xt, t P R, be a continuous function of linearly interpo-
lated values of Xk. We define a positive excursion of Xk as a fragment of the time series on
an interval rl, rs, l, r P Z such that Xl ě Xr and Xk ą Xl for all l ă k ă r. To each positive
excursion of Xk on rl, rs corresponds a positive excursion of Xt on rl, r̃s, where r̃ P pr´1, rs is
such that Xr̃ “ Xl. This construction is illustrated in Fig. 8. The level set tree of a positive
excursion of Xk is that of the corresponding positive excursion of Xt.

l r-1 r Time, tr
~

Figure 8. Excursion of a time series: illustration. The values of time series
Xk are shown by circles; the circles that form the excursion on rl, rs are filled.
The linear interpolation function Xt is shown by solid line; the excursion of
Xt on rl, r̃s is shown in bold.

Proposition 4 and a comment after it suggest that the problem of finding self-similar trees
with edge lengths is equivalent to finding extreme-invariant processes

(15) Xk
d
“ ζ X

p1q
k for some ζ ą 0,

where Xk, k P Z, is a time series with an atomless value distribution at every k and X
p1q
k is

the corresponding time series of local minima. If Xk satisfies (15), the level set tree of an
excursion from Xk, considered as an element of L, is self-similar according to Def. 12. The
next section describes a solution to (15) that corresponds to ζ “ 2.

4.5. Self-similarity for random walks on R. Consider a random walk tXkukPZ with a
homogeneous transition kernel ppx, yq ” ppx´yq, for any x, y P R, where ppxq is an atomless
density function. A homogeneous random walk is called symmetric if ppxq “ pp´xq for all
x P R.

Lemma 1 (Pruning for random walks, [28]). The following statements hold.

a: The local minima of a homogeneous random walk tXkukPZ form a homogeneous ran-
dom walk (with a different transition kernel in general).

b: The local minima of a symmetric homogeneous random walk tXkukPZ form a sym-
metric homogeneous random walk (with a different transition kernel in general).

The transition kernel of a symmetric random walk can be represented as the even part of
a probability density function fpxq with support in R`:

ppxq “
fpxq ` fp´xq

2
.
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The following result describes the solution of the problem (15) in terms of the characteristic
function of fpxq.

Proposition 5 (Self-similarity for a symmetric homogeneous random walk, [28]).
The local minima of a symmetric homogeneous random walk tXkukPZ with a transition kernel

ppxq “ fpxq`fp´xq
2

form a symmetric homogeneous random walk with a transition kernel

pp1qpxq “ ζ´1 ppx{ζq, c ą 0

if and only if ζ “ 2 and

(16) <

”
pfp2sq

ı
“

ˇ̌
ˇ̌
ˇ

pfpsq

2 ´ pfpsq

ˇ̌
ˇ̌
ˇ

2

,

where pfpsq is the characteristic function of fpxq and <rzs stays for the real part of z P C.

A solution to (16) is given for example by an exponential density fpxq “ φλpxq of (18)
for any λ ą 0; a detailed discussion of exponential kernels is given in Sect. 4.6. A weaker,
mean self-similarity of Defs. 6, 8 is satisfied in any symmetric random walk, as discussed in
the following statement.

Theorem 1 (Mean self-similarity of a symmetric homogeneous random walk, [28]).
The combinatorial level set tree T “ shape plevelpXtqq of a finite symmetric homogeneous
random walk Xk with k “ 1, . . . , N is mean self-similar. Specifically, for a uniform random

complete subtree subtreeK,kpTq Ă T of order K ă kpT q the numbers τ
prq
i,j of side-branches

of order i that merge the r-th branch of order j, with 2 ď j ď K, in subtreeK,kpTq are
independent identically distributed random variables. If τi,j is a random variable such that

τ
prq
i,j

d
“ τi,j, then

(17) Ti,j :“ E rτi,js “ 2j´i´1 “: Tj´i.

Moreover, by the strong law of large numbers kpT q
a.s.
Ñ 8 as N Ñ 8, and for any 1 ď i ă j

we have the empirical average

T i,j “
1

Nj

Njÿ

r“1

τ
prq
i,j

a.s.
ÝÑ Tj´i “ 2j´i´1 as N Ñ 8,

where Nj is the number of side-branches of order j, and T i,j can be computed over the entire
T (we let T i,j “ 0 when Nj “ 0).

4.6. Exponential random walks. We call a homogeneous random walk exponential if its
kernel is a mixture of exponential jumps constructed as follows

ppxq “ ρ φλu
pxq ` p1 ´ ρqφλd

p´xq, 0 ď ρ ď 1, λu, λd ą 0,

where φλ is the exponential density with parameter λ ą 0,

(18) φλpxq “

#
λe´λx if x ě 0,

0 if x ă 0.

We refer to an exponential random walk by its parameter triplet tρ, λu, λdu. Each exponential
random walk with parameters tρ, λu, λdu corresponds to a piece-wise linear function from
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EpRq whose rises and falls have independent exponential lengths with parameters p1 ´ ρqλu

and ρλd, respectively. An exponential random walk is symmetric if and only if ρ “ 1{2 and
λu “ λd.

Theorem 2 (Self-similarity of exponential random walks, [28]). Let Xt be an expo-
nential random walk with parameters tρ, λu, λdu. Then

a: The local minima of Xt form a exponential random walk with parameters tρ˚, λ˚
u, λ

˚
du

such that

(19) ρ˚ “
ρ λd

ρ λd ` p1 ´ ρqλu

, λ˚
d “ ρλd, and λ˚

u “ p1 ´ ρqλu.

b: The exponential walk Xt satisfies the self-similarity (15) if and only if it is symmet-
ric, that is if ρ “ 1{2 and λu “ λd.

c: The self-similarity (15) is achieved after the first pruning, for the chain X
p1q
t of the

local minima, if and only if the walk’s increments have zero mean, ρ λd “ p1 ´ ρqλu.

Recall that GWpp0, p2q denotes the space of binary Galton-Watson trees with termination
probability p0 and split probability p2 (see Example 1).

Definition 13 (Exponential binary Galton-Watson tree, [21]). We say that a random
embedded binary tree T P Lplane is an exponential binary Galton-Watson tree GWpλ1, λq, for
0 ď λ1 ă λ, if shape(T ) is a binary Galton-Watson tree GWpp0, p2q with

p0 “
λ ` λ1

2λ
, p2 “

λ ´ λ1

2λ
,

and given shape(T ), the edges of T are sampled as independent exponential random vari-
ables with parameter 2λ, i.e., with density φ2λpxq.

A connection between exponential random walks and Galton-Watson trees is given by the
following well known result.

Theorem 3. [21, Lemma 7.3],[15, 18] Consider a random excursion Yt in Eex. The level
set tree levelpYtq is an exponential binary Galton-Watson tree GWpλ1, λq if and only if
the rises and falls of Yt, excluding the last fall, are distributed as independent exponential
random variables with parameters pλ ` λ1q and pλ ´ λ1q, respectively, for some 0 ď λ1 ă λ.
Equivalently, the level set tree of a homogeneous random walk is a binary Galton-Watson
tree GWpλ1, λq if and only if Yt, as an element of Eex, corresponds to an excursion of an
exponential walk with parameters tρ, λu, λpu such that p1 ´ ρqλu “ λ ` λ1 and ρλd “ λ ´ λ1.

We emphasize the following direct consequence of Thms. 2(a) and 3.

Corollary 1. Consider a critical binary Galton-Watson tree with independent exponential
lengths, T “ GWp0, γq. The following statements hold:

a: The Harris path of RkpT q for any 0 ď k ă kpT q corresponds to a positive excur-
sion of a symmetric exponential random walk with parameters

 
1
2
, 21´kγ, 21´kγ

(
, or,

equivalently, RkpT q “ GW
`
0, 2´kγ

˘
.

b: The length of any branch of order j ě 1 in T has exponential distribution with
parameter 22´j γ. The lengths of branches (of all orders) are independent.
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5. Hierarchical branching process

The results of previous section concern a very narrow class of mean self-similar trees –
those with Tk “ 2k´1. Among such trees, the self-similarity is established only for the
critical binary Galton-Watson tree GWp0, γq with independent exponential edge lengths,
i.e., continuous parameter Galton-Watson binary branching Markov processes; this case
corresponds to the scaling exponent ζ “ 2. Here we construct a branching process that
generates self-similar trees for an arbitrary sequence Tk ě 0 and for any ζ ą 0; it includes
the critical binary Galton-Watson tree as a special case.

5.1. Definition and main properties. Consider a probability mass function tpKuKě1, a
sequence tTkukě1 of nonnegative Tokunaga coefficients, and a sequence tλjujě1 of positive
termination rates. A multi-type branching process Sptq starts with a root branch of Horton-
Strahler orderK ě 1 with probability pK . Every branch of order j ď K produces offspring of
order i ă j with rate λjTj´i. A branch of order j terminates with rate λj. After termination,
a branch of order j ě 2 splits into two branches of order j ´ 1. A branch of order j “ 1
terminates without leaving offspring. The branching history of Sptq creates a random binary
tree T rSs in the space L of binary trees with edge lengths and no planar embedding. The
process is uniquely specified by the triplet

Sptq “ ptTku, tλju, tpKuq .

Proposition 6 (Side-branching in hierarchical branching process). Consider a hi-
erarchical branching process Sptq “ ptTku, tλju, tpKuq. For any branch b Ă T rSs of order
K ` 1 ě 2, let mi :“ mipbq ě 0 be the number of its side branches of order i “ 1, . . . , K,
and m :“ mpbq “ m1 ` ¨ ¨ ¨ ` mK be the total number of the side branches. Let li :“ lipbq
be the lengths of m ` 1 edges within b, counted sequentially from the initial vertex, and
l :“ lpbq “ l1 ` ¨ ¨ ¨ ` lm`1 be the total branch length. Then the following statements hold:

(1) The total numbers mpbq of side branches within different branches of order K ` 1 are
i.i.d. random variables with a common geometric distribution:

(20) P
`
m “ κ

˘
“ qp1 ´ qqκ with q “

1

1 ` T1 ` ¨ ¨ ¨ ` TK

, κ “ 0, 1, . . . .

(2) The number mi of side branches of order i has geometric distribution:

(21) P
`
mi “ κ

˘
“ qip1 ´ qiq

κ with qi “
1

1 ` TK´i`1

, κ “ 0, 1, . . . .

(3) Conditioned on the total number m of side branches, the distribution of tmiu is
multinomial with m trials and success probabilities

(22) Ppside branch has order iq “
TK´i`1

T1 ` ¨ ¨ ¨ ` TK

.

The side branch order vector k “ pk1, . . . , kmq, where the side branches are labeled
sequentially starting from the initial vertex of b, is obtained from the sequence

orders “ p1, . . . , 1looomooon
m1 times

, 2, . . . , 2loomoon
m2 times

, . . . K, . . . , Kqloooomoooon
mK times

by a uniform random permutation σm of indices t1, . . . ,mu:

k “ orders ˝ σm.
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(4) The branch length l has exponential distribution with rate λK`1, independent of the
lengths of any other branch (of any order). The corresponding edge lengths li are
i.i.d. random variables; they have a common exponential distribution with rate

(23) λK`1p1 ` T1 ` ¨ ¨ ¨ ` TKq.

Proof. All the properties readily follow from process construction. �

Proposition 6 provides an alternative definition of the hierarchical branching process,
and its construction – via parts (1), (3), and (4) – that does not require time-dependent
simulations.

Theorem 4 (Self-similarity of hierarchical branching process). Consider a hierar-
chical branching process Sptq “ ptTku, tλju, tpKuq and let T :“ T rSs be the tree generated by
Sptq. The following statements hold.

(1) The combinatorial part of T is mean self-similar (according to Def. 6,8) with Toku-
naga coefficients tTku.

(2) The combinatorial part of T is self-similar (according to Def. 11) with Tokunaga
coefficients tTku if and only if

pK “ pp1 ´ pqK´1

for some 0 ă p ă 1.
(3) The tree T is self-similar (according to Def. 12) with scaling exponent ζ ą 0 if and

only if
pK “ pp1 ´ pqK´1 and λj “ γ ζ´j

for some positive γ and 0 ă p ă 1.

Proof. By process construction, the tree T is coordinated in shapes and lengths (according
to Def. 12), with independent complete subtrees.

(1) Proposition 6, part (3) implies that the expected value of the number Ñi,j of side

branches of order i ě 1 within a branch of order j ą i is given by E

´
Ñi,j

¯
“ Tj´i. The

mean self-similarity of Def. 6 with coefficients Tk immediately follows, using a conditional
argument as in (7).

(2) Assume that shape pT q is self-similar. A geometric distribution of orders is then
established in Prop. 2. Inversely, a geometric distribution of orders ensures that the total
mass µ pHKq, K ě 1, is invariant with respect to pruning. The conditional distribution of
trees of a given order is completely specified by the side branch distribution, described in
Proposition 6, parts (1)-(3). Consider a branch of order K ` 1, K ě 1. Pruning decreases
the orders of this branch, and all its side branches, by unity. Pruning eliminates a random
geometric number m1 of side-branches of order 1 from the branch. It acts as a thinning (with
removal probability TK{pT1 ` ¨ ¨ ¨ ` TKq) on the total side branch count m. Accordingly, the
total side branch count after pruning has geometric distribution with success probability

qR “
1

1 ` T1 ` . . . TK´1

.

The order assignment among the remaining side branches of orders i “ 1, . . . , K ´ 1 is done
according to multinomial distribution with probabilities proportional to TK´i. This coincides
with the side branch structure in the original tree, hence completing the proof of (2).
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(3) Having proven (2), it remains to prove the statement for the length structure of the
tree. Assume that T is self-similar with scaling exponent ζ. The branches of order j ě 2
become branches of order j ´ 1 after pruning, which necessitates λj “ ζ λj´1. Inversely,
pruning acts as a thinning on the side branches within a branch of order K ` 1, eliminating
the side branches of order k “ 1. Accordingly, the spacings between the remaining side
branches are exponentially distributed with a decreased rate

λK`1p1 ` T1 ` ¨ ¨ ¨ ` TK´1q “ ζ λKp1 ` T1 ` ¨ ¨ ¨ ` TK´1q.

Comparing this with (23), and recalling the self-similarity of shape pT q, we conclude that
Def. 12 is satisfied with scaling exponent ζ. �

5.2. Hydrodynamic limit. Here we analyze the average numbers of branches of different
orders in a hierarchical branching process, using a hydrodynamic limit. Specifically, let

nx
pnq
j psq be the number of branches of order j at time s observed in n independent copies

of the process S. Let Njpsq be the number of branches of order j ě 1 in the process S at
instant s ě 0. We observe that, by the law of large numbers,

x
pnq
j psq

a.s.
ÝÑ E pNjpsqq “: xjpsq.

Theorem 5 (Hydrodynamic limit for branch dynamics). Suppose that the following
conditions are satisfied:

(24) L :“ lim sup
kÑ8

T
1{k
k ă 8,

and

(25) sup
jě1

λj ă 8, lim sup
jÑ8

λ
1{j
j ď 1{L.

Then, for any given T ą 0, the empirical process

xpnqpsq “
´
x

pnq
1 psq, x

pnq
2 psq, . . .

¯T

, s P r0, T s,

converges almost surely, as n Ñ 8, to the process

xpsq “
´
x1psq, x2psq, . . .

¯T

, s P r0, T s,

that satisfies

(26) 9x “ GΛx with the initial conditions xp0q “ π :“
8ÿ

K“1

pKeK ,

where Λ “ diagtλ1, λ2, . . .u is a diagonal operator with the entries λ1, λ2, . . . , ei are the
standard basis vectors, and

(27) G :“

»
——————–

´1 T1 ` 2 T2 T3 . . .

0 ´1 T1 ` 2 T2 . . .

0 0 ´1 T1 ` 2
. . .

0 0 0 ´1
. . .

...
...

. . . . . . . . .

fi
ffiffiffiffiffiffifl
.
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Proof. The process xpnqpsq evolves according to the transition rates

qpnqpx, x ` `q “ nβ`

ˆ
1

n
x

˙

with

β`pxq “

$
’’’&
’’’%

λ1x1 if ` “ ´e1,

λi`1xi`1 if ` “ 2ei ´ ei`1, i ě 1,
8ř

j“i`1

λjTj´ixj if ` “ ei, i ě 1.

Here the first term reflects termination of branches of order 1; the second term reflects
termination of branches of orders i`1 ą 1, each of which results in creation of two branches
of order i; and the last term reflects side-branching. Thus, the infinitesimal generator of the
stochastic process xpnqpsq is

Lnfpxq “ nλ1x1

„
f

ˆ
x ´

1

n
e1

˙
´ fpxq


`

8ÿ

i“1

nλi`1xi`1

„
f

ˆ
x ´

1

n
ei`1 `

2

n
ei

˙
´ fpxq



`
8ÿ

i“1

˜
8ÿ

j“i`1

nλjTj´ixj

¸„
f

ˆ
x `

1

n
ei

˙
´ fpxq


.(28)

Let

F pxq :“
ÿ

`

β`pxq “ ´λ1x1e1 `
8ÿ

i“1

λi`1xi`1p2ei ´ ei`1q `
8ÿ

i“1

˜
8ÿ

j“i`1

λjTj´ixj

¸
ei.

The convergence result of Kurtz ([7, Theorem 2.1, Chapter 11], [14, Theorem 8.1]) extends
(without changing the proof) to the Banach space `1pRq provided the same conditions are
satisfied for `1pRq as for R

d in the theorem of Kurtz. Specifically, we require that for a
compact set C in `1pRq,

(29)
ÿ

`

}`}1 sup
xPC

β`pxq ă 8,

and there exists MC ą 0 such that

(30) }F pxq ´ F pyq}1 ď MC}x ´ y}1, x, y P C.

Here the condition (29) follows from

ÿ

i

sup
xPC

|λixi| ă 8 and
ÿ

i

sup
xPC

8ÿ

j“i`1

λjTj´i|xj| ă 8,

which in turn follow from conditions (25). Similarly, Lipschitz conditions (30) are satisfied in
C due to conditions (25). Thus, by Kurtz ([7, Theorem 2.1, Chapter 11], [14, Theorem 8.1]),
the process xpnqpsq converges almost surely to xpsq that satisfies 9x “ F pxq, which expands
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as the following system of ordinary differential equations:

(31)

$
’’’’’’&
’’’’’’%

x1
1psq “ ´λ1x1 ` λ2pT1 ` 2qx2 ` λ3T2x3 ` . . .

x1
2psq “ ´λ2x2 ` λ3pT1 ` 2qx3 ` λ4T2x4 ` . . .

...

x1
kpsq “ ´λkxk ` λk`1pT1 ` 2qxk`1 ` λk`2T2xk`2 ` . . .

...

with the initial conditions xp0q “ lim
nÑ8

xpnqp0q “ π :“
8ř

K“1

pKeK by the law of large numbers.

Finally, we observe that }π}1 “ 1, and conditions (25) imply that GΛ is a bounded operator
in `1pRq. �

5.3. Criticality and time invariance. Assume that the hydrodynamic limit xpsq, and

hence the averages xjpsq, exist. Let π “
8ř

K“1

pKeK . Then one can consider the average

progeny of the process, that is the average number of branches of any order alive at instant
s:

Cpsq “
8ÿ

j“1

xjpsq “
›››eGΛsπ

›››
1
.

In hydrological literature, an empirical version of the process Cpsq is called the width function
of a tree T rSs.

Definition 14. A hierarchical branching process Spsq is said to be critical if and only if the
width function Cpsq “ 1 for all s ě 0.

Definition 15. A hierarchical branching process Spsq is said to be time-invariant if and
only if

(32) eGΛsπ “ π for all s ě 0.

Proposition 7. Suppose that the hydrodynamic limit xpsq exists, and π is time-invariant.
Then the process Spsq is critical.

Proof. Cpsq “ }xpsq}1 “ }eGΛsπ}1 “ }π}1 “ 1. �

Let t̂pzq “ ´1 ` 2z `
ř

j z
j Tj for |z| ă 1{L, where L is defined in (24). Observe that

there is a unique real root w0 of t̂pzq within p0, 1
2
s. We formulate our results in terms of the

Horton exponent R :“ w´1
0 (e.g., [20, 11]).

Proposition 8. Suppose Λ π is a constant multiple of the geometric vector v0 “
8ř

K“1

R´KeK.

Then the process Spsq is time-invariant.

Proof. Observe that since t̂ pR´1q “ 0 and G is a Toeplitz operator,

Gv “ t̂pwqv for v “
8ÿ

K“1

wKeK , |w| ă L.
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and

Gv0 “ t̂
`
R´1

˘
v0 “ 0 for v0 :“

8ÿ

K“1

R´KeK .

Hence GΛπ “ t̂ pR´1qΛπ “ 0 and

eGΛsπ “ π `
8ÿ

m“1

sm

m!
pGΛqmπ “ π.

�

Remark 4. Proposition 8 states that the condition

(33) λK pK “ bR´K , K ě 1

is sufficient for time-invariance, for any proportionality constant b ą 0. This implies that a
time-invariant process can be constructed for

(i) an arbitrary sequence of Tokunaga coefficients tTku satisfying (24) – by selecting
λK pK “ bR´K ;

(ii) arbitrary sequences tTku satisfying (24) and tpKu – by selecting λK “ bR´K p´1
K ;

(iii) arbitrary sequences tTku satisfying (24) and tλKu – by selecting pK “ bR´K λ´1
K .

At the same time, arbitrary sequences tλKu, tpKu will not, in general, satisfy (33) and hence
will not correspond to a time-invariant process.

5.4. Criticality and time-invariance in a self-similar process. A convenient charac-
terization of criticality can be established for self-similar hierarchical branching processes.
Recall that by Theorem 4, part (3), a self-similar process Spsq is specified by parameters
γ ą 0, 0 ă p ă 1 and length self-similarity constant ζ ą 0 such that pK “ pp1 ´ pqK´1 and
λj “ γ ζ´j. We refer to a self-similar process by its parameter triplet, Spsq “ Sp,γ,ζpsq, and
denote the respective width function by Cp,γ,ζpsq. Observe that in the self-similar case the
first of the conditions (25) is equivalent to ζ ě 1, and the second is equivalent to ζ ě L.
Hence, the conditions (25) are equivalent to ζ ě 1 _ L.

Theorem 6 (Width function of a self-similar process). Consider a self-similar process
Sp,γ,ζpsq with 0 ă p ă 1, γ ą 0. Suppose that (24) is satisfied and ζ ě 1 _ L. Then

Cp,γ,ζpsq

$
’&
’%

decreases if p ą 1 ´ ζ

R
,

“ 1 if p “ 1 ´ ζ

R
,

increases if p ă 1 ´ ζ

R
.

Proof. The choice of the limits for ζ ensures that the conditions (25) are satisfied and hence,
by Theorem 5, the hydrodynamic limit xpsq exists and the width function Cp,γ,ζpsq is well
defined. Now we have

Λπ “
γp

1 ´ p

8ÿ

K“1

`
ζ´1p1 ´ pq

˘K
eK ,

and therefore

(34) GΛπ “ t̂
`
ζ´1p1 ´ pq

˘
Λπ.

Iterating recursively, we obtain

pGΛq2π “ t̂
`
ζ´1p1 ´ pq

˘
GΛ2π “ t̂

`
ζ´1p1 ´ pq

˘
t̂
`
ζ´2p1 ´ pq

˘
Λ2π,
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and in general,

pGΛqmπ “ t̂
`
ζ´1p1 ´ pq

˘
GΛmπ “

«
mź

i“1

t̂
`
ζ´ip1 ´ pq

˘
ff
Λmπ.

Thus, taking xp0q “ π,

(35) xpsq “ eGΛsπ “ π `
8ÿ

m“1

sm

m!

«
mź

i“1

t̂
`
ζ´ip1 ´ pq

˘
ff
Λmπ.

The width function for the given values of p P p0, 1q, γ ą 0 and ζ ě 1 can therefore be
expressed as

Cp,γ,ζpsq “
8ÿ

j“1

xjpsq “ 1 `
8ÿ

m“1

sm

m!

«
mź

i“1

t̂
`
ζ´ip1 ´ pq

˘
ff

8ÿ

j“1

`
Λmπ

˘
j

“ 1 `
8ÿ

m“1

`
sγ{ζ

˘m

m!

«
mź

i“1

t̂
`
ζ´ip1 ´ pq

˘
ff

p

1 ´ ζ´mp1 ´ pq
(36)

as
8ř
j“1

`
Λmπ

˘
j

“
8ř
j“1

λm
j πj “

8ř
j“1

γmζ´jmpp1 ´ pqj´1 “ γmζ´m p

1´ζ´mp1´pq
.

Next, notice that by letting p1 “ 1 ´ ζ´1p1 ´ pq, we have from (36) and the uniform
convergence of the corresponding series for any fixed M ą 0 and s P r0,M s, that

(37)
d

ds
Cp,γ,ζpsq “

γ

ζ
t̂p1 ´ p1qCp1,γ,ζpsq with Cp,γ,ζp0q “ Cp1,γ,ζp0q “ 1.

Observe that ζ ě 1 implies p1 ě p and Cp1,γ,ζpsq ď Cp,γ,ζpsq. Also, observe that

t̂p1 ´ p1q

$
’&
’%

ă 0 if p ą 1 ´ ζ

R

“ 0 if p “ 1 ´ ζ

R

ą 0 if p ă 1 ´ ζ

R

as t̂ is an increasing function on r0,8q and t̂
`
1{R

˘
“ 0. This leads to the statement of the

theorem. �

Remark 5. If ζ “ 1, equation (37) implies Cp,γ,1psq “ exp
 
sγt̂p1 ´ pq

(
and hence

Cp,γ,1psq

$
’&
’%

exponentially decreases if p ą 1 ´ R´1,

“ 1 for all s ě 0 if p “ 1 ´ R´1,

exponentially increases if p ă 1 ´ R´1.

This case is further examined in Sect. 5.5. In general, the width function Cp,γ,ζpsq may

increase sub-exponentially for p ă 1 ´ ζ

R
. For example, if there is a nonnegative integer d

such that ζd`1 ă R, then for p “ 1 ´ ζd`1

R
we have t̂

`
ζ´d´1p1 ´ pq

˘
“ 0. Hence, (35) implies

that Cp,γ,ζpsq is a polynomial of degree d.

Theorem 7 (Criticality of a self-similar process). Consider a self-similar process
Sp,γ,ζpsq with 0 ă p ă 1, γ ą 0. Suppose that (24) is satisfied and ζ ě 1 _ L. Then
the following conditions are equivalent:

(i) The process is critical.
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(ii) The process is time-invariant.
(iii) The following relations hold: ζ ă R and p “ pc :“ 1 ´ ζ

R
.

Proof. (i)Ø(iii) is established in Theorem 6. (ii)Ñ(i) is established in Prop 7. (iii)Ñ(ii):
Observe that t̂ pζ´1p1 ´ pqq “ t̂ pR´1q “ 0. Time invariance now follows from (35). �

Remark 6. In a self-similar process the sequences λK and pK are geometric such that
(Thm. 4)

λK pK “
γ p

1 ´ p

ˆ
1 ´ p

ζ

˙K

for some 0 ă p ă 1, γ ą 0, and ζ ě 1_L. Hence, a time-invariant process can be constructed,
according to Prop. 8 and (33), by selecting any sequence tTku that corresponds to

R “ ζ p1 ´ pq´1.

Theorem 7 states that this is the only possible way to construct a time-invariant process,
given that the process is self-similar.

5.5. A closed form solution for the case of equally distributed branch lengths.

Observe that if Λ “ γI, then xpsq “ esγt̂p1´pqπ and Cpsq “ }xpsq}1 “ esγt̂p1´pqs.
Consider a hierarchical branching process with Λ “ I and xp0q “ eK for a given integer

K ě 1. Here the system of equation (31) is finite dimensional,

(38)

$
’’’’’’&
’’’’’’%

x1
1psq “ ´x1 ` pT1 ` 2qx2 ` T2x3 ` . . . ` TK´1xK

x1
2psq “ ´x2 ` pT1 ` 2qx3 ` T2x4 ` . . . ` TK´2xK

...

x1
K´1psq “ ´xK´1 ` pT1 ` 2qxK

x1
Kpsq “ ´xK

with the initial conditions xp0q “ eK .

Define a sequence tpjq as

tp0q “ ´1, tp1q “ T1 ` 2, and tpjq “ Tj for j ě 2,

and let ypsq “ esxpsq. Then (38) becomes

(39)

$
’’’’’’’’&
’’’’’’’’%

y1
1psq “ tp1qy2 ` tp2qy3 ` . . . ` tpK ´ 1qyK
y1
2psq “ tp1qy3 ` tp2qy4 ` . . . ` tpK ´ 2qyK

...

y1
K´2psq “ tp1qyK´1 ` tp2qyK
y1
K´1psq “ tp1qyK
y1
Kpsq “ 0

with the initial conditions yp0q “ eK . The ODEs (39) can be solved recursively in a reversed
order of equations in the system obtaining for for m “ 1, . . . , K ´ 1,

yK´mpsq “
mÿ

n“1

¨
˚̋ ÿ

i1,...,ině1
i1`...`in“m

tpi1q ¨ . . . ¨ tpinq

˛
‹‚
sn

n!
.
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Let δ0pjq “ Itj“0u be the Kronecker delta function. Then we arrive with the closed form
solution

xK´mpsq “ e´syK´mpsq “ e´s

8ÿ

n“1

pt ` δ0q ˚ pt ` δ0q ˚ . . . ˚ pt ` δ0qlooooooooooooooooooomooooooooooooooooooon
n times

pmq
sn

n!
.(40)

Observe that if we randomize the orders of trees by assigning an order K to a tree with
geometric probability pK “ pp1 ´ pqK´1, then the above closed form expression (40) would
yield an expression for the width function that was observed in Remark 5 of this section:

Cpsq “ e´s ` e´s

8ÿ

n“1

8ÿ

m“1

p1 ´ pqm pt ` δ0q ˚ pt ` δ0q ˚ . . . ˚ pt ` δ0qlooooooooooooooooooomooooooooooooooooooon
n times

pmq
sn

n!

“ e´s ` e´s

8ÿ

n“1

´
t̂p1 ´ pq ` 1

¯n sn

n!
“ exp

 
st̂p1 ´ pq

(
.

5.6. Critical Galton-Watson process. The critical binary Galton-Watson process plays
an important role in theory and applications because of its multiple symmetries. Burd,
Waymire and Winn [4] have shown that the following three properties are equivalent for the
binary Galton-Watson distributions GWpp0, p2q: (i) A distribution is prune-invariant; (ii)
A distribution is mean self-similar with EpTi,jq “ Tj´i “ 2j´i´1; and (iii) A distribution is
critical: p0 “ p2 “ 1{2. The Markov structure of the critical Galton-Watson trees ensures
the existence of two other special properties: (iv) Time-invariance (in discrete time): the
forest of trees, obtained by removing the edges and the vertices below depth d, has the
same frequency structure as the original space GWp1{2, 1{2q; and (v) The forest of trees
obtained by considering subtrees rooted at every vertex of a random tree T approximates
the frequency structure of the entire space of trees when the order of T increases.

The next results shows that the critical binary Galton-Watson tree is a special case of the
hierarchical branching process.

Theorem 8 (Critical Galton-Watson tree). A hierarchical branching process with pa-
rameters

(41) λj “ γ22´j, pK “ 2´K , and Tk “ 2k´1 for any γ ą 0

is distributionally equivalent to the critical binary Galton-Watson tree GWp0, γq with i.i.d.
edge lengths that have a common exponential distribution with rate 2 γ. This is a self-similar,
critical, and time-invariant process with

R “ 4, L “ 2, and ζ “ 2.

Proof. Consider a tree T “ GWp0, γq P L. By Corollary 1, each branch of order j in T is
exponentially distributed with parameter λj “ γ22´j, which matches the branch length dis-
tribution in the hierarchical branching process (41). Furthermore, conditioned on RipT q ‰ φ

(which happens with a positive probability), we have RipT q “ GWp0, 2´iγq. This means that
the space RipLq of pruned trees is a linearly scaled version of the original space L (the same
combinatorial structure, linearly scaled edge lengths). Burd et al. [4] have shown that the
total number of sub-branches within a branch of order j ě 2 in T is geometrically dis-
tributed over Z` with mean T1 ` ¨ ¨ ¨ ` Tj´1 “ 2j´1 ´ 1 (that is Ppmq “ 21´j p1 ´ 21´jq

m
for

m P Z`), where Ti,j “ Tj´i “ 2j´i´1. The assignment of orders among the m side-branches
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is done according to the multinomial distribution with m trials and success probabilities
Ti{pT1 ` ¨ ¨ ¨ ` Tj´1q, i “ 1, . . . , j ´ 1. This implies that, conditioning on a particular imple-
mentation of the pruned tree RpT q, the leaves of the original tree merge into every branch
of the pruned tree as a Poisson point process with intensity γ “ λjTj´1. Iterating this
pruning argument, conditioning on the particular implementation of RipT q “ GWp0, 2´iγq,
the branches of order i merge into any branch of the pruned tree RipT q as a Poisson point
process with intensity γ 21´i “ λjTj´i for every j ą i. Finally, the critical binary Galton-
Watson space has pK “ 2´K [4]. We, hence, conclude that a GWp0, γq tree is distributionally
identical to the hierarchical branching process with parameters (41).
By Thm. 4, the process (41) is self-similar with the scaling exponent ζ “ 2. Criticality

and time-invariance follow from Prop. 7. �

5.7. Critical Tokunaga processes. We introduce here a class of processes that extends
the symmetries observed in the critical binary Galton-Watson tree with exponential edge
lengths (where ζ “ 2) to the general case of ζ ě 1. Specifically, consider a hierarchical
branching process STokpt; c, γq, which we call the critical Tokunaga branching process, with
parameters

(42) λj “ γ c2´j, pK “ 2´K , and Tk “ pc ´ 1q ck´1 for any γ ą 0, c ě 1.

Proposition 9. The process STokpt; c, γq is a self-similar critical time invariant process. In-
dependently of the process combinatorial shape, its edge lengths are i.i.d. exponential random
variables with rate γc. In addition, we have

t̂pzq “
p1 ´ 2 c zqpz ´ 1q

1 ´ c z
, R “ w´1

0 “ 2 c, ζ “ L “ c, and pc “ 2´1.

Proof. Self-similarity follows from Thm. 4. Criticality and time-invariance are established in
Prop. 7. The edge lengths property follows from Prop. 6, part(4). �

Remark 7. The condition Ti,i`k “ Tk “ a ck´1 was first introduced in hydrology by Eiji
Tokunaga [25] in a study of river networks, hence the process name. The additional constraint
a “ c´1 is necessitated here by the self-similarity of tree lengths, which requires the sequence
λj to be geometric. The sequence of the Tokunaga coefficients then also has to be geometric,
and satisfy a “ c´1, to ensure identical distribution of the edge lengths, see Prop. 6, part(4).
Interestingly, the constraint a “ c ´ 1 appears in the Random Self-similar Network (RSN)
model introduced by Veitzer and Gupta [26], which uses a purely topological algorithm of
recursive local replacement of the network generators to generate self-similar random trees.
The importance of the constraint a “ c ´ 1 in a combinatorial situation is discussed in the
next section.

6. Combinatorial critical Tokunaga process

This section focuses on the combinatorial structure of a tree generated by the critical
Tokunaga process (leaving aside the edge lengths). A general combinatorial reformulation
of the hierarchical branching process can be found in [13].

Consider a combinatorially self-similar (according to Def. 11) tree T “ shape
`
T rSs

˘
P T

generated by a hierarchical branching process S with Tokunaga sequence tTku and initial
distribution pK “ pp1 ´ pqK´1. Let random variable K be the order of the tree T , and,
conditioned on K ą 1, let Ka, Kb be the orders of its two subtrees, Ta and Tb, rooted at the
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internal vertex closest to the root, randomly and uniformly permuted. We call Ta and Tb

the principal subtrees of T . Observe that the pair Ka, Kb uniquely defines the tree order K:

K “

#
Ka _ Kb, if Ka ‰ Kb,

Ka ` 1, if Ka “ Kb.

Let K1 ď K2 be the order statistics of Ka, Kb. The joint distribution of pK1, K2q is given by

(43) P pK1 “ j,K2 “ m|K “ kq “

$
’&
’%

1

1 ` T1 ` ¨ ¨ ¨ ` Tk´1

if j “ m “ k ´ 1

Tk´j

1 ` T1 ` ¨ ¨ ¨ ` Tk´1

if j ă m “ k
,

where

PpK “ k|K ą 1q “ p1 ´ pqpk´2.

Proposition 10. Consider a critical Tokunaga process STokpt; c, γq. Then, conditioned on
K ą 1, the marginal order distribution of Ka coincides with that of K:

(44) PpKa “ m | K ą 1q “ 2´m “ pm for m ě 1.

At the same time, the joint distribution of pKa, Kbq equals the product of the marginals,

(45) PpKa “ m, Kb “ j | K ą 1q “ PpKa “ m | K ą 1qPpKb “ j | K ą 1q,

if and only if c “ 2.

Proof. Observe that for k ą 1,

PpKa “ m | K “ kq

“

$
’’&
’’%

1
2

ř
j:jăk

PpK1 “ j,K2 “ k|K “ kq if m “ k,

PpK1 “ K2 “ k ´ 1|K “ kq ` 1
2
PpK1 “ k ´ 1, K2 “ k|K “ kq if m “ k ´ 1,

1
2
PpK1 “ m,K2 “ k|K “ kq if m ă k ´ 1,

“

$
’’’’’&
’’’’’%

1

2

T1 ` ¨ ¨ ¨ ` Tk´1

1 ` T1 ` ¨ ¨ ¨ ` Tk´1

“ 1´c1´k

2
if m “ k,

1 ` 1
2
T1

1 ` T1 ` ¨ ¨ ¨ ` Tk´1

“ c`1
2
c1´k if m “ k ´ 1,

1

2

Tk´m

1 ` T1 ` ¨ ¨ ¨ ` Tk´1

“ pc´1qc´m

2
if m ă k ´ 1.

Thus,

PpKa “ m | K ą 1q “p1 ´ c1´mq2´m ` c´m2´m `
pc ´ 1qc´m

2

8ÿ

k“m`1

21´k “ 2´m.

At the same time,

PpKa “ m, Kb “ j | K ą 1q “

#
pc ´ 1qc´j 2´m if j ă m,

c´m 2´m if j “ m.

Hence, (45) holds if and only if c “ 2. �
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Remark 8. Proposition 10 asserts that the principal subtrees in a random critical Tokunaga
tree are dependent, except the critical Galton-Watson case. This implies that, in general,
non-overlapping subtrees within a critical Tokunaga tree are dependent. Accordingly, the
increments of the Harris pathH of a critical Tokunaga process have (long-range) dependence.
The only exception is the case c “ 2 that was discussed in Sect. 4.6. The structure of H
is hence reminiscent of a self-similar random process [17, 22]. Establishing the correlation
structure of the Harris paths of critical Tokunaga processes is an interesting open problem
(see Sect.7).

The critical Tokunaga trees introduced in Prop. 9 have an additional important property:
the frequencies of vertex orders in a large-order tree approximate the frequencies of orders
in the entire space T . To formalize this observation, let µ be the measure on T induced by
STokpt; c, γq, i.e. µpT q “ P

`
shapepT rSToksq “ T

˘
. Next, for a fixed K ě 1, let µKpT q “

µpT |T P HKq. Let VkrKs denote the number of vertices of order k P t1, . . . , Ku in a tree

generated by µK , and let VkrKs “ EpVkrKsq. Finally, we denote by V rKs “
Kř
k“1

VkrKs the

total number of non-root vertices, and notice that V rKs “ 2V1rKs ´ 1. Thus, VrKs :“
EpV rKsq “ 2V1rKs ´ 1.

Proposition 11. Let STokpt; c, γq be a critical Tokunaga branching process, then

(46) lim
KÑ8

VkrKs

V1rKs
“ 21´k.

Let T “ shape
`
T rSToks

˘
P HK be a tree generated by µK, and let v be a vertex selected by

uniform random drawing from the non-root vertices of T . Then

(47) lim
KÑ8

Ppv has order kq “ pk “ 2´k.

Proof. It has been shown in [11] that the mean self-similar trees satisfy the strong Horton
law:

lim
KÑ8

NkrKs

N1rKs
“ R1´k, for any k ě 1.

Observe now that for any T P HK we have

VkpT q “

NkpT qÿ

i“1

p1 ` mipT qq,

wheremipT q is the number of sub-branches that merge the i-th branch of order k P t1, . . . , Ku
in T , according to the proper branch labeling of Sect. 2.2. Proposition 6 gives

VkrKs “ NkrKsp1 ` T1 ` ¨ ¨ ¨ ` Tk´1q.

For the process STokpt; c, γq this implies

lim
KÑ8

VkrKs

V1rKs
“ lim

KÑ8

NkrKsp1 ` T1 ¨ ¨ ¨ ` Tk´1q

N1rKs
“ R1´kck´1 “ 21´k.

The statement (47) is an immediate consequence of (46), since

lim
KÑ8

VkrKs

VrKs
“ lim

KÑ8

VkrKs

2V1rKs ´ 1
“ 2´k
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as V1rKs ě 2K´1. �

Proposition 11 has an immediate extension to trees with edge lengths, which we include
here for completeness. A tree T P L can be considered a metric space with distance dpa, bq
between two points a, b P T defined as the length of the shortest path within T connecting
them; see [21, Sect. 7.3] for details.

Proposition 12. Consider a random tree T “ T rSToks P L generated by a critical Tokunaga
branching process STokpt; c, γq conditioned on the order kpT q “ K. Let point u P T be sampled
from a uniform density function on the metric space T , and let rurKs denote the order of
the edge to which the point u belongs. Then

(48) lim
KÑ8

PprurKs “ kq “ pk “ 2´k.

Proof. Proposition 9 establishes that the edge lengths in T are i.i.d. exponential random
variables. Thus we can generate T by first sampling the combinatorial tree shapepT q from
HK according to conditional measure µKpT q “ µpT |T P HKq, and then assigning i.i.d.
exponential edge lengths. Provided that we already sampled shapepT q, selecting the i.i.d.
edge lengths and then selecting the point u P T uniformly at random, and marking the
edge that u belongs to, is equivalent to selecting a random edge uniformly from the edges of
shapepT q, in order of proper labeling of Sect. 2.2. The order rurKs is uniquely determined
by the edge to which u belongs. The statement now follows immediately from Prop. 11. �

7. Open problems

We conclude with two open problems, which refer to extending selected properties of the
critical Galton-Watson tree with independent exponential edge lengths, GWp0, γq, which
is a special case of the hierarchical branding process (see Thm. 8), to a general case. Our
formulations are intentionally informal, reflecting multiplicity of possible rigorous approaches
to each of them. Here Sptq “ ptTku, tλju, tpKuq is a self-similar hierarchical branching process
with

L “ lim sup
kÑ8

T
1{k
k ă 8, pK “ pp1 ´ pqK´1, λj “ γ ζ´j

for some positive 0 ă p ă 1, γ ą 0, and ζ ě 1 _ L.

Open Problem 1. Describe the correlation structure of the Harris path of Sptq. (The critical
binary Galton-Watson tree with independent exponential edge lengths GWp0, γq corresponds
to a symmetric Markov chain with exponential jumps

 
1
2
, 2 γ, 2 γ

(
, see Thm. 8).

Open Problem 2. Establish a proper infinite-tree limit of Sptq, where the edge lengths go to
zero and the tree length increases to infinity, that preserves a suitably defined limit version
of the self-similarity property. Describe the respective limit Harris path processes. (The
Harris path of the critical binary Galton-Watson tree GWp0, γq can be rescaled to converge
to excursion of the standard Brownian motion [15, 18].)
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